Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

Hydrogen-bonding patterns in trimethoprim picolinate and 2-amino-4,6-dimethylpyrimidinium picolinate hemihydrate

Madhukar Hemamalini, ${ }^{\text {a }}$ Packianathan Thomas Muthiah ${ }^{\text {a* }}$ and Daniel E. Lynch ${ }^{\text {b }}$

${ }^{\text {a }}$ School of Chemistry, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India, and ${ }^{\mathbf{b}}$ Faculty of Health and Life Sciences, Coventry University, Coventry CV1 5FB, England
Correspondence e-mail: tommtrichy@yahoo.co.in
Received 26 September 2005
Accepted 17 November 2005
Online 31 January 2006
In the title compounds, namely 2,4-diamino-5-[(3,4,5-trimethoxyphenyl)methyl]pyrimidin-1-ium pyridine-2-carboxylate, $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{~N}_{4} \mathrm{O}_{3}{ }^{+} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}{ }^{-}$, (I), and 2-amino-4,6-di-methylpyrimidin-1-ium pyridine-2-carboxylate hemihydrate, $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{~N}_{3}{ }^{+} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}{ }^{-} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$, (II), the trimethoprim and 2-amino-4,6-dimethylpyrimidin-1-ium cations are protonated at one of the pyrimidine N atoms. In (I), bifurcated hydrogen bonds are observed between a picolinate O atom, the protonated N atom and the 2 -amino group; the graph-set designator is $R_{2}^{1}(6)$. The pyrimidine moieties of the trimethoprim cations are centrosymmetrically paired through a pair of $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds. In addition to the base pairing, one of the picolinate O atoms bridges the 2 - and 4 -amino groups on either side of the paired bases, resulting in a complementary $D A D A$ array. In (II), the carboxylate group of the picolinate anion binds with the protonated pyrimidine N atom and the 2-amino group of the pyrimidine moiety through a pair of $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, leading to the common ring motif $R_{2}^{2}(8)$. The water molecule, which resides on a twofold rotation axis, bridges the carboxylate group of the picolinate anion via $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

Comment

Hydrogen-bonding patterns involving aminopyrimidine and carboxylates have been observed in drug-receptor interactions, protein-nucleic acid interactions and supramolecular architectures (Desiraju, 1989). Studies of such interactions are also of current interest because of their applications in drug design and the crystal engineering of pharmaceuticals (Stanley et al., 2005). Pyrimidine and aminopyrimidine derivatives are biologically important as they occur in nature as components of nucleic acid. Some aminopyrimidine derivatives are used as antifolate drugs (Hunt et al., 1980; Baker \& Santi, 1965). Trimethoprim [2,4-diamino-5-(3,4,5-trimethoxybenzyl)pyrim-
idine, TMP] is a well known antifolate drug. It selectively inhibits the bacterial dihydrofolate reductase (DHFR) enzyme (Hitchings et al., 1988). Picolinic acid (pyridine-2carboxylic acid) is a well known terminal tryptophan metabolite (Mahler \& Cordes, 1971). It induces apoptosis in leukaemia HL-60 cells (Ogata et al., 2000). The crystal structures of a dinuclear oxomolybdenum (V) complex of picolinate (Okabe et al., 2002), of catena-poly[[[bis(2-pyridinecarboxyl-ato)copper(II)]- μ-benzene-1,2,4,5-tetracarboxylic acid] dihydrate] (Wang et al., 2005) and of trans-dichloro(dimethyl sulfoxide)(2-picoline)platinum(II) (Melanson et al., 1978) have been reported. In this paper, the crystal structures of trimethoprim (TMP) picolinate, (I), and 2-amino-4,6dimethylpyrimidinium (AMPY) picolinate hemihydrate, (II), are described.

(I)

(II)

Views of (I) and (II) are shown in Figs. $1(a)$ and $1(b)$, respectively. In (I), the asymmetric unit contains a trimethoprim cation and a picolinate anion. In (II), one 2-amino-4,6dimethylpyrimidinium cation, one picolinate anion and one half-molecule of water (the O atom of the water molecule lies on a twofold axis) constitute the asymmetic unit. In both structures, the pyrimidine moieties are protonated at N 1 , leading to an increase in internal angles (see angles $\mathrm{C} 2-\mathrm{N} 1-$ C6 in Tables 1 and 3) compared with neutral TMP (Koetzle \&

(a)

(b)

Figure 1
Views of (a) (I) and (b) (II), showing the atom-labelling schemes and 50% probability displacement ellipsoids. H atoms are shown as small spheres of arbitrary radii.

Williams, 1976) and AMPY (Panneerselvam et al., 2004). In (I), the dihedral angle between the pyrimidine and benzene rings is $76.06(7)^{\circ}$. This value is close to that found in TMPcarboxylate salts (Raj, Stanley et al., 2003). The C4-C5$\mathrm{C} 7-\mathrm{C} 8$ and $\mathrm{C} 5-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$ torsion angles are -68.79 (18) and $168.05(14)^{\circ}$, respectively.

In (I), atom O5 of the carboxylate group accepts a H atom from protonated atom N 1 and the 2-amino group of the pyrimidine ring, forming a cyclic hydrogen-bonded bimolecular pattern [graph-set $R_{2}^{1}(6)$; Etter, 1990; Bernstein et al., 1995]. A similar pattern was also observed in the crystal structure of trimethoprim 3-carboxy-4-hydroxybenzenesulfonate dihydrate (Raj, Sethuraman et al., 2003). This is different from the common $R_{2}^{2}(8)$ pattern observed in the crystal structures of aminopyrimidine-carboxylate salts (Stanley et al., 2002). The pyrimidine moieties form base pairs through $\mathrm{N} 4-\mathrm{H} \cdots \mathrm{N} 3$ (Table 2) hydrogen bonds involving the 4 -amino group and atom N3. In addition to the base pairing, a hydrogen-bonded acceptor (atom O 4 from the picolinate anion) bridges the 4 - and 2-amino groups on both sides of the pairing, leading to a complementary linear $D A D A$ array ($D=$

Figure 2
The hydrogen-bonding patterns (dashed lines) in (I). [Symmetry codes: (i) $2-x, 2-y, 1-z$; (ii) $1-x, 1-y, 1-z$; (iii) $x-1, y-1, z$]

Figure 3
The hydrogen-bonding patterns (dashed lines) in (II). [Symmetry code: (i) $\frac{1}{2}-x, \frac{3}{2}-y, 1-z$.]
donor in hydrogen bonds and $A=$ acceptor in hydrogen bonds), with the rings having the graph-set notations $R_{2}^{3}(8)$, $R_{2}^{2}(8)$ and $R_{2}^{3}(8)$. The same type of $D A D A$ array has also been observed in the crystal structures of trimethoprim trifluoroacetate (Francis et al., 2002) and a copper(II) phthalate trimethoprim complex (Raj, Muthiah et al., 2003). The characteristic hydrogen-bonded rings observed in the structure aggregate into a supramolecular ladder consisting of a pair of chains, each of which is built up of alternating TMP and picolinate anions (Fig. 2).

In (II), the carboxylate group (atoms O1 and O2) of the picolinate anion interacts with protonated atom N1 and the 2-amino group of the pyrimidine moiety through a pair of $\mathrm{N}-$ $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, leading to the common ring motif with graph-set notation $R_{2}^{2}(8)$ (Lynch et al., 2004). This is reminiscent of the trimethoprim-carboxylate interactions observed in the DHFR-TMP complexes (Kuyper, 1989). The water molecule, which resides on a twofold rotation axis, bridges the carboxylate groups of the picolinate anions via $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds. One of the H atoms of the 2-amino group is also involved in bifurcated hydrogen bonding with carboxyl atom O 2 and the pyridine N atom to form a five-membered hydrogen-bonded ring [$R_{2}^{1}(5)$; Fig. 3].

Experimental

A hot methanol solution of picolinic acid (61.5 mg , obtained from SD Fine Chemicals Ltd) was mixed with a hot aqueous solution of trimethoprim [for (I); 145 mg , obtained from Shilpa Antibiotics Ltd] or 2-amino-4,6-dimethylpyrimidine [for (II); 63.25 mg , obtained from Merck]. The mixtures were cooled slowly and kept at room temperature. After a few days, colourless block-shaped crystals of (I) and (II) were obtained from the corresponding solutions.

Compound (I)

Crystal data

$\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{~N}_{4} \mathrm{O}_{3}{ }^{+} . \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}{ }^{-}$
$M_{r}=413.43$
Triclinic, $P \overline{1}$
$a=9.0642(3) \AA$
$b=10.2730(3) \AA$
$c=12.1188(4) \AA$
$\alpha=108.051(17)^{\circ}$
$\beta=98.741(2)^{\circ}$
$\gamma=107.517()^{\circ}$
$V=985.03(14) \AA^{\circ}$

Data collection

Nonius KappaCCD area-detector
diffractometer
φ and ω scans
17816 measured reflections
4537 independent reflections
3758 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.051$
$w R\left(F^{2}\right)=0.141$
$S=1.13$
4537 reflections
275 parameters
H-atom parameters constrained

$$
Z=2
$$

$D_{x}=1.394 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 3758
reflections
$\theta=3.1-27.6^{\circ}$
$\mu=0.10 \mathrm{~mm}^{-1}$
$T=120$ (2) K
Block, colourless
$0.22 \times 0.20 \times 0.16 \mathrm{~mm}$

$$
\begin{aligned}
& R_{\text {int }}=0.036 \\
& \theta_{\max }=27.6^{\circ} \\
& h=-11 \rightarrow 11 \\
& k=-13 \rightarrow 13 \\
& l=-15 \rightarrow 15
\end{aligned}
$$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0748 P)^{2}\right. \\
& +0.2682 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \text { 。 } \\
& \Delta \rho_{\max }=0.47 \mathrm{e}^{\circ} \AA^{-3} \\
& \Delta \rho_{\min }=-0.47 \mathrm{e}^{-3} \\
& \text { Extinction correction: SHELXL97 } \\
& \text { Extinction coefficient: } 0.138 \text { (9) }
\end{aligned}
$$

Table 1
Selected geometric parameters ($\AA,^{\circ}$) for (I).

O1-C12	$1.381(2)$	O3-C10	$1.363(2)$
O1-C14	$1.428(2)$	O3-C16	$1.425(2)$
O2-C11	$1.3826(18)$	O4-C22	$1.255(2)$
O2-C15	$1.429(2)$	O5-C22	$1.253(2)$
C2-N1-C6	$119.87(14)$	N1-C2-N3	$121.87(14)$
C2-N3-C4	$118.52(14)$	N1-C2-N2	$118.21(14)$
N2-C2-N3	$119.92(14)$	N3-C4-N4	$116.74(14)$

Table 2
Hydrogen-bond geometry ($\AA \AA^{\circ}$) for (I).

$D-\mathrm{H} \cdots A$	D-H	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N1-H1 . ${ }^{\text {O } 5}$	0.88	1.92	2.7308 (19)	151
N1-H1 \cdots N5	0.88	2.39	3.0441 (19)	131
$\mathrm{N} 2-\mathrm{H} 2 A \cdots \mathrm{O} 4^{\text {i }}$	0.88	2.00	2.8693 (19)	169
$\mathrm{N} 2-\mathrm{H} 2 B \cdots \mathrm{O}$	0.88	2.02	2.7982 (19)	147
$\mathrm{N} 4-\mathrm{H} 4 A \cdots \mathrm{~N} 3^{\text {ii }}$	0.88	2.12	2.9966 (18)	173
$\mathrm{N} 4-\mathrm{H} 4 B \cdots \mathrm{O} 4^{\text {iii }}$	0.88	2.14	2.8412 (18)	137
C14-H14A \cdots O2	0.96	2.56	2.899 (3)	101
C17-H17.. $\mathrm{O}^{\text {iv }}$	0.93	2.49	3.141 (2)	128

Symmetry codes: (i) $-x+2,-y+2,-z+1$; (ii) $-x+1,-y+1,-z+1$; (iii) $x-1$, $y-1, z$; (iv) $-x,-y-1,-z$.

Compound (II)

Crystal data

$\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{~N}_{3}{ }^{+} . \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}{ }^{-} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=255.28$
Monoclinic, $C 2 / c$
$a=15.7666$ (4) \AA
$b=8.7980$ (1) \AA
$c=18.5038$ (4) A
$\beta=102.7400(10)^{\circ}$
$V=2503.55(9) \AA^{3}$
$Z=8$
$D_{x}=1.355 \mathrm{Mg} \mathrm{m}^{-3}$
Data collection

Nonius KappaCCD area-detector	$R_{\text {int }}=0.026$
\quad diffractometer	$\theta_{\max }=26.0^{\circ}$
φ and ω scans	$h=-19 \rightarrow 19$
16549 measured reflections	$k=-10 \rightarrow 10$
2451 independent reflections	$l=-22 \rightarrow 22$
2204 reflections with $I>2 \sigma(I)$	

Table 3
Selected geometric parameters ($\left(\AA{ }^{\circ}\right.$) for (II).

O1-C14	$1.2687(18)$	N3-C4	$1.3270(19)$
O2-C14	$1.2430(18)$	N3-C2	$1.3558(18)$
N1-C2	$1.3642(17)$	N4-C13	$1.3409(19)$
N1-C6	$1.3591(18)$	N4-C9	$1.3410(18)$
N2-C2	$1.3190(18)$		
C2-N1-C6	$121.13(12)$	N1-C6-C8	$116.34(12)$
C2-N3-C4	$117.42(12)$	N1-C6-C5	$118.40(13)$
C9-N4-C13	$117.73(12)$	N4-C9-C14	$116.70(12)$
N1-C2-N2	$118.83(12)$	N4-C9-C10	$122.74(13)$
N1-C2-N3	$121.72(13)$	N4-C13-C12	$123.12(15)$
N2-C2-N3	$119.45(12)$	O1-C14-O2	$126.11(14)$
N3-C4-C7	$116.99(12)$	O2-C14-C9	$117.86(13)$
N3-C4-C5	$122.80(13)$	O1-C14-C9	$116.03(12)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.060$
$w R\left(F^{2}\right)=0.143$
$S=1.25$
2451 reflections
171 parameters
H -atom parameters constrained

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0834 P)^{2}\right. \\
& +1.0121 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\text {max }}=0.78 \mathrm{e}^{-3} \\
& \Delta \rho_{\text {min }}=-0.82 \mathrm{e}^{-3} \\
& \text { Extinction correction: SHELXL97 } \\
& \text { (Sheldrick, 1997) } \\
& \text { Extinction coefficient: } 0.060 \text { (4) }
\end{aligned}
$$

Table 4
Hydrogen-bond geometry ($\AA,^{\circ}$) for (II).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{O} 1$	0.88	1.80	$2.6657(15)$	168
$\mathrm{O} 1 W-\mathrm{H} 1 W \cdots \mathrm{O} 1$	0.99	2.00	$2.9588(14)$	164
$\mathrm{~N} 2-\mathrm{H} 2 A \cdots \mathrm{O} 2^{\mathrm{i}}$	0.88	2.53	$2.9166(16)$	108
$\mathrm{~N} 2-\mathrm{H} 2 A \cdots \mathrm{~N} 4^{\mathrm{i}}$	0.88	2.09	$2.9645(16)$	170
$\mathrm{~N} 2-\mathrm{H} 2 B \cdots \mathrm{O} 2$	0.88	1.93	$2.8125(16)$	175

Symmetry code: (i) $-x+\frac{1}{2},-y+\frac{3}{2},-z+1$.

For compound (I), all H atoms were placed in idealized positions and refined as riding, with $\mathrm{C}-\mathrm{H}=0.93-0.97 \AA$ and $\mathrm{N}-\mathrm{H}=0.88 \AA$, and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ or $1.5 U_{\text {eq }}$ (methyl C,N). For compound (II), the H atoms of the water molecules were located in a difference Fourier map and refined as riding, with $\mathrm{O}-\mathrm{H}=0.98 \AA$ and $U_{\text {iso }}(\mathrm{H})=$ $1.5 U_{\text {eq }}(\mathrm{O})$. The other H atoms were placed in idealized positions and refined as riding, with $\mathrm{C}-\mathrm{H}=0.95-0.98 \AA$ and $\mathrm{N}-\mathrm{H}=0.88 \AA$, and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C}, \mathrm{N})$. The highest peak in the final difference map was found at a distance of $1.29 \AA$ from H13 and the deepest hole was 0.72 A from C14.

For both compounds, data collection: DENZO (Otwinowski \& Minor, 1997) and COLLECT (Nonius, 1998); cell refinement: DENZO and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: PLATON.

MH thanks the Council of Scientific and Industrial Research (CSIR), India, for the award of a Senior Research Fellowship (SRF) [reference No. 9/475(123)/2004-EMR-I]. DL thanks the EPSRC National Crystallographic Service, Southampton, England, for the X-ray data collection.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: SQ1233). Services for accessing these data are described at the back of the journal.

References

Baker, B. R. \& Santi, D. V. (1965). J. Pharm. Sci. 44, 1252-1257.
Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Desiraju, G. R. (1989). Crystal Engineering: The Design of Organic Solids. Amsterdam: Elsevier.
Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.
Francis, S., Muthiah, P. T., Bocelli, G. \& Righi, L. (2002). Acta Cryst. E58, o717-o719.
Hitchings, G. H., Kuyper, L. F. \& Baccananari, D. P. (1988). Design of Enzyme Inhibitors as Drugs, edited by M. Sandler \& H. J. Smith, p. 343. New York: Oxford University Press.

organic compounds

Hunt, W. E., Schwalbe, C. H., Bird, K. \& Mallinson, P. D. (1980). Biochem. J. 187, 533-536.
Koetzle, T. F. \& Williams, G. J. B. (1976). J. Am. Chem. Soc. 98, 2074-2078.
Kuyper, L. F. (1989). Computer-Aided Drug Design: Methods and Applications, edited by T. J. Perun \& C. L. Propst, ch. 9, pp. 327-370. New York: Marcel Dekker Inc.
Lynch, D. E. \& Jones, G. D. (2004). Acta Cryst. B60, 748-754.
Mahler, H. R. \& Cordes, E. H. (1971). Biological Chemistry, 2nd ed., pp. 801803. New York: Harper and Row Publishers.

Melanson, R. \& Rochon, F. D. (1978). Acta Cryst. B34, 1125-1127.
Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
Ogata, S., Takeuchi, M., Fujita, H., Shibata, K., Okumura, K. \& Taguchi, H. (2000). Biosci. Biotechnol. Biochem. 64, 327-332.

Okabe, N., Isomoto, N. \& Odoko, M. (2002). Acta Cryst. E58, m1-m3.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.

Panneerselvam, P., Muthiah, P. T. \& Francis, S. (2004). Acta Cryst. E60, o7470749.

Raj, S. B., Muthiah, P. T., Bocelli, G. \& Cantoni, A. (2003). Inorg. Chem. Comтип. 6, 748-751.
Raj, S. B., Sethuraman, V., Francis, S., Hemamalini, M., Muthiah, P. T., Bocelli, G., Cantoni, A., Rychlewska, U. \& Warzajtis, B. (2003). CrystEngComm, 5, 70-76.
Raj, S. B., Stanley, N., Muthiah, P. T., Bocelli, G., Oll'a, R. \& Cantoni, A. (2003). Cryst. Growth Des. 3, 567-571

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Stanley, N., Muthiah, P. T., Geib, S. J., Luger, P., Weber, M. \& Messerschmidt, M. (2005). Tetrahedron, 61, 7201-7210.

Stanley, N., Sethuraman, V., Muthiah, P. T., Luger, P. \& Weber, M. (2002). Cryst. Growth Des. 6, 631-635.
Wang, L., Zhou, D.-H. \& Zhang, J.-P. (2005). Acta Cryst. E61, m958-m960.

